Objectives:

- Define relationships between f(x), f'(x) and f''(x).
- Use information from f(x) to graph f'(x).

What does f(x) tell us about f'(x)?

If $f(x)$ is	increasing	at $x = a$, then $f'(a)$ is	positive
If $f(x)$ is _	decreasing	at $x = a$, then $f'(a)$ is	negative
If $f(x)$ has	a horizontal tang	gent line at $x = a$, the	$n f'(a) = \underline{0} .$

Note: If f(x) is discontinuous at a, has a corner/cusp at a, or has a vertical tangent line at a, then f'(a) is undefined.

What does f(x) tell us about f''(x)?

Summary

First, look for points where the derivative or second derivative is zero. Then consider where f'(x) and f''(x) are positive or negative, according to the following patterns:

f(x)	increasing	decreasing
f'(x)	+	_

f(x)	concave up	concave down
f'(x)	increasing	decreasing
f''(x)	+	_

Example:

	$x \in (1,3)$	x = 3	$x \in (3, 6)$	x = 6	$x \in (6,7)$
f(x)	increasing	horizontal tangent	increasing	horizontal tangent	decreasing
f'(x)	+	0	+	0	_

	$x \in (1,3)$	$x \in (3,5)$	$x \in (5,7)$
f(x)	concave down	concave up	concave down
f'(x)	decreasing	increasing	decreasing
f''(x)	_	+	_

We'll use these basic rules in today's class activity. The solutions to the activity will be posted on the course website - I would recommend adding at least some of those examples to your notes.